Spatiotemporal Co-occurrence Pattern (STCOP) Mining
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-99873-2_5
Reference14 articles.
1. Aydin, B., Akkineni, V., Angryk, R.: Time-efficient significance measure for discovering spatiotemporal co-occurrences from data with unbalanced characteristics. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS ’15, pp. 80:1–80:4. ACM, New York, NY, USA (2015). https://doi.org/10.1145/2820783.2820871 . URL http://doi.acm.org/10.1145/2820783.2820871
2. Aydin, B., Akkineni, V., Angryk, R.A.: Mining spatiotemporal co-occurrence patterns in non-relational databases. GeoInformatica 20(4), 801–828 (2016). https://doi.org/10.1007/s10707-016-0255-0 . URL http://dx.doi.org/10.1007/s10707-016-0255-0
3. Aydin, B., Angryk, R., Filali Boubrahimi, S., Hamdi, S.M.: Spatiotemporal Frequent Pattern Discovery from Solar Event Metadata. AGU Fall Meeting Abstracts SH34A-08 (2016)
4. Aydin, B., Angryk, R.A.: Spatiotemporal frequent pattern mining on solar data: Current algorithms and future directions. In: IEEE International Conference on Data Mining Workshop, ICDMW 2015, Atlantic City, NJ, USA, November 14–17, 2015, pp. 575–581 (2015). https://doi.org/10.1109/ICDMW.2015.10 . URL http://dx.doi.org/10.1109/ICDMW.2015.10
5. Aydin, B., Kempton, D., Akkineni, V., Angryk, R., Pillai, K.G.: Mining spatiotemporal co-occurrence patterns in solar datasets. Astronomy and Computing 13, 136–144 (2015). http://dx.doi.org/10.1016/j.ascom.2015.10.003
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Spatiotemporal Companion Pattern (STCP) Mining of Ships Based on Trajectory Features;Journal of Marine Science and Engineering;2023-02-28
2. A Survey on Spatiotemporal Co-occurrence Pattern Mining Techniques;Algorithms for Intelligent Systems;2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3