A Novel Resistive Memory-based Process-in-memory Architecture for Efficient Logic and Add Operations

Author:

Li Taozhong1,Wang Qin1,Zhu Yongxin2,Jiang Jianfei1,He Guanghui1,Jin Jing1,Mao Zhigang1,Jing Naifeng3

Affiliation:

1. Shanghai Jiao Tong University, China

2. Chinese Academy of Sciences, China

3. Shanghai Jiao Tong University

Abstract

The coming era of big data revives the Processing-in-memory (PIM) architecture to relieve the memory wall problem that embarrasses the modern computing system. However, most existing PIM designs just put computing units closer to memory, rather than a complete integration of them due to their incompatibility in CMOS manufacturing. Fortunately, the emerging Resistive-RAM (ReRAM) offers new hope to this dilemma owing to its inherent memory and computing capability using the same device. In this article, we propose a ReRAM memory structure with efficient PIM capability of both logic and add operations. It first leverages non-linearity to suppress sneak current and thus sustains high memory density. Using a differential bit cell, it also enables efficient processing of arbitrary logic functions using the same memory cells with non-destructive operations. Then, a novel PIM adder is proposed, which customizes a sneak current path as the carry-chain for fast carry propagation and improves adder performance significantly. In the experiment, the proposed PIM demonstrates higher efficiency in both computing area and performance for logic and addition, which greatly increases the ReRAM PIM applicability for future computable architectures.

Funder

Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3