High-bandwidth address translation for multiple-issue processors

Author:

Austin Todd M.1,Sohi Gurindar S.1

Affiliation:

1. Computer Sciences Department, University of Wisconsin-Madison, 1210 W. Dayton Street, Madison, WI

Abstract

In an effort to push the envelope of system performance, microprocessor designs are continually exploiting higher levels of instruction-level parallelism, resulting in increasing bandwidth demands on the address translation mechanism. Most current microprocessor designs meet this demand with a multi-ported TLB. While this design provides an excellent hit rate at each port, its access latency and area grow very quickly as the number of ports is increased. As bandwidth demands continue to increase, multi-ported designs will soon impact memory access latency.We present four high-bandwidth address translation mechanisms with latency and area characteristics that scale better than a multiported TLB design. We extend traditional high-bandwidth memory design techniques to address translation, developing interleaved and multi-level TLB designs. In addition, we introduce two new designs crafted specifically for high-bandwidth address translation. Piggyback ports are introduced as a technique to exploit spatial locality in simultaneous translation requests, allowing accesses to the same virtual memory page to combine their requests at the TLB access port. Pretranslation is introduced as a technique for attaching translations to base register values, making it possible to reuse a single translation many times.We perform extensive simulation-based studies to evaluate our designs. We vary key system parameters, such as processor model, page size, and number of architected registers, to see what effects these changes have on the relative merits of each approach. A number of designs show particular promise. Multi-level TLBs with as few as eight entries in the upper-level TLB nearly achieve the performance of a TLB with unlimited bandwidth. Piggyback ports combined with a lesser-ported TLB structure, e.g., an interleaved or multi-ported TLB, also perform well. Pretranslation over a single-ported TLB performs almost as well as a same-sized multi-level TLB with the added benefit of decreased access latency for physically indexed caches.

Publisher

Association for Computing Machinery (ACM)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fat Loads: Exploiting Locality Amongst Contemporaneous Load Operations to Optimize Cache Accesses;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

2. Valkyrie;Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques;2020-09-30

3. Filtering Translation Bandwidth with Virtual Caching;Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems;2018-03-19

4. A survey of techniques for architecting TLBs;Concurrency and Computation: Practice and Experience;2016-12-22

5. Single-Instruction Multiple-Data Execution;Synthesis Lectures on Computer Architecture;2015-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3