Can We Predict a Riot? Disruptive Event Detection Using Twitter

Author:

Alsaedi Nasser1,Burnap Pete1,Rana Omer1

Affiliation:

1. Cardiff University, UK

Abstract

In recent years, there has been increased interest in real-world event detection using publicly accessible data made available through Internet technology such as Twitter, Facebook, and YouTube. In these highly interactive systems, the general public are able to post real-time reactions to “real world” events, thereby acting as social sensors of terrestrial activity. Automatically detecting and categorizing events, particularly small-scale incidents, using streamed data is a non-trivial task but would be of high value to public safety organisations such as local police, who need to respond accordingly. To address this challenge, we present an end-to-end integrated event detection framework that comprises five main components: data collection, pre-processing, classification, online clustering, and summarization. The integration between classification and clustering enables events to be detected, as well as related smaller-scale “disruptive events,” smaller incidents that threaten social safety and security or could disrupt social order. We present an evaluation of the effectiveness of detecting events using a variety of features derived from Twitter posts, namely temporal, spatial, and textual content. We evaluate our framework on a large-scale, real-world dataset from Twitter. Furthermore, we apply our event detection system to a large corpus of tweets posted during the August 2011 riots in England. We use ground-truth data based on intelligence gathered by the London Metropolitan Police Service, which provides a record of actual terrestrial events and incidents during the riots, and show that our system can perform as well as terrestrial sources, and even better in some cases.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Protests and Riots in Urban Environments With Satellite Imagery and Deep Learning;Transactions in GIS;2024-08-30

2. DiEvD-SF: Disruptive Event Detection Using Continual Machine Learning With Selective Forgetting;IEEE Transactions on Computational Social Systems;2024-06

3. A Survey on Event Tracking in Social Media Data Streams;Big Data Mining and Analytics;2024-03

4. Towards a resilience assessment framework for the airport passenger terminal operations;Journal of Air Transport Management;2024-01

5. A Situational Awareness Tool using Open-Source Intelligence (OSINT) and Artificial Intelligence (AI);2023 IEEE International Conference on Advances in Data-Driven Analytics And Intelligent Systems (ADACIS);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3