Real time discovery of dense clusters in highly dynamic graphs

Author:

Agarwal Manoj K.1,Ramamritham Krithi2,Bhide Manish3

Affiliation:

1. IBM Research-India, New Delhi

2. IIT-Bombay, Mumbai, India

3. IBM India Software Labs, Hyderabad

Abstract

Due to their real time nature, microblog streams are a rich source of dynamic information, for example, about emerging events . Existing techniques for discovering such events from a microblog stream in real time (such as Twitter trending topics), have several lacunae when used for discovering emerging events; extant graph based event detection techniques are not practical in microblog settings due to their complexity; and conventional techniques, which have been developed for blogs, web-pages, etc., involving the use of keyword search, are only useful for finding information about known events. Hence, in this paper, we present techniques to discover events that are unraveling in microblog message streams in real time so that such events can be reported as soon as they occur. We model the problem as discovering dense clusters in highly dynamic graphs. Despite many recent advances in graph analysis, ours is the first technique to identify dense clusters in massive and highly dynamic graphs in real time. Given the characteristics of microblog streams, in order to find clusters without missing any events, we propose and exploit a novel graph property which we call short-cycle property . Our algorithms find these clusters efficiently in spite of rapid changes to the microblog streams. Further we present a novel ranking function to identify the important events. Besides proving the correctness of our algorithms we show their practical utility by evaluating them using real world microblog data. These demonstrate our technique's ability to discover, with high precision and recall, emerging events in high intensity data streams in real time. Many recent web applications create data which can be represented as massive dynamic graphs. Our technique can be easily extended to discover, in real time, interesting patterns in such graphs.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3