Predicting Protests and Riots in Urban Environments With Satellite Imagery and Deep Learning

Author:

Warnke Scott1,Runfola Daniel2ORCID

Affiliation:

1. Department of Applied Science William & Mary Williamsburg Virginia USA

2. Department of Applied Science & Data Science Program William & Mary Williamsburg Virginia USA

Abstract

ABSTRACTConflict, manifesting as riots and protests, is a common occurrence in urban environments worldwide. Understanding their likely locations is crucial to policymakers, who may (for example) seek to provide overseas travelers with guidance on safe areas, or local policymakers with the ability to pre‐position medical aid or police presences to mediate negative impacts associated with riot events. Past efforts to forecast these events have focused on the use of news and social media, restricting applicability to areas with available data. This study utilizes a ResNet convolutional neural network and high‐resolution satellite imagery to estimate the spatial distribution of riots or protests within urban environments. At a global scale (N = 18,631 conflict events), by training our model to understand relationships between urban form and riot events, we are able to predict the likelihood that a given urban area will experience a riot or protest with accuracy as high as 97%. This research has the potential to improve our ability to forecast and understand the relationship between urban form and conflict events, even in data‐sparse regions.

Funder

National Science Foundation

Publisher

Wiley

Reference92 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3