Affiliation:
1. Department of Applied Science William & Mary Williamsburg Virginia USA
2. Department of Applied Science & Data Science Program William & Mary Williamsburg Virginia USA
Abstract
ABSTRACTConflict, manifesting as riots and protests, is a common occurrence in urban environments worldwide. Understanding their likely locations is crucial to policymakers, who may (for example) seek to provide overseas travelers with guidance on safe areas, or local policymakers with the ability to pre‐position medical aid or police presences to mediate negative impacts associated with riot events. Past efforts to forecast these events have focused on the use of news and social media, restricting applicability to areas with available data. This study utilizes a ResNet convolutional neural network and high‐resolution satellite imagery to estimate the spatial distribution of riots or protests within urban environments. At a global scale (N = 18,631 conflict events), by training our model to understand relationships between urban form and riot events, we are able to predict the likelihood that a given urban area will experience a riot or protest with accuracy as high as 97%. This research has the potential to improve our ability to forecast and understand the relationship between urban form and conflict events, even in data‐sparse regions.
Funder
National Science Foundation