Accurate indirect branch prediction

Author:

Driesen Karel1,Hölzle Urs1

Affiliation:

1. Department of Computer Science, University of California, Santa Barbara, CA

Abstract

Indirect branch prediction is likely to become increasingly important in the future because indirect branches occur more frequently in object-oriented programs. With misprediction rates of around 25% on current processors, indirect branches can incur a significant fraction of branch misprediction overhead even though they remain less frequent than the more predictable conditional branches. We investigate a wide range of two-level predictors dedicated exclusively to indirect branches. Starting with predictors that use full-precision addresses and unlimited tables, we progressively introduce hardware constraints and minimize the loss of predictor performance at each step. For programs from the SPECint95 suite as well as a suite of large C++ applications, a two-level predictor achieves a misprediction rate of 9.8% with a 1K-entry table and 7.3% with an 8K-entry table, representing more than a threefold improvement over an ideal BTB. A hybrid predictor further reduces the misprediction rates to 8.98% (1K) and 5.95% (8K).

Publisher

Association for Computing Machinery (ACM)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. mcfTRaptor: Toward unobtrusive on-the-fly control-flow tracing in multicores;Journal of Systems Architecture;2015-11

2. BTB Energy Reduction by Focusing on Useless Accesses;IEICE Transactions on Electronics;2015

3. A General Low-Cost Indirect Branch Prediction Using Target Address Pointers;Journal of Computer Science and Technology;2014-11

4. Register Indirect Jump Target Forwarding;IEICE Transactions on Information and Systems;2013

5. Optimizing code-copying JIT compilers for virtual stack machines;Concurrency and Computation: Practice and Experience;2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3