Affiliation:
1. Department of Computer Science, University of California, Santa Barbara, CA
Abstract
Indirect branch prediction is likely to become increasingly important in the future because indirect branches occur more frequently in object-oriented programs. With misprediction rates of around 25% on current processors, indirect branches can incur a significant fraction of branch misprediction overhead even though they remain less frequent than the more predictable conditional branches. We investigate a wide range of two-level predictors dedicated exclusively to indirect branches. Starting with predictors that use full-precision addresses and unlimited tables, we progressively introduce hardware constraints and minimize the loss of predictor performance at each step. For programs from the SPECint95 suite as well as a suite of large C++ applications, a two-level predictor achieves a misprediction rate of 9.8% with a 1K-entry table and 7.3% with an 8K-entry table, representing more than a threefold improvement over an ideal BTB. A hybrid predictor further reduces the misprediction rates to 8.98% (1K) and 5.95% (8K).
Publisher
Association for Computing Machinery (ACM)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献