Optimized Refinement for Spatially Adaptive SPH

Author:

Winchenbach Rene1ORCID,Kolb Andreas1

Affiliation:

1. University of Siegen, Siegen, NRW

Abstract

In this article, we propose an improved refinement process for the simulation of incompressible low-viscosity turbulent flows using Smoothed Particle Hydrodynamics, under adaptive volume ratios of up to 1 : 1, 000, 000. We derive a discretized objective function, which allows us to generate ideal refinement patterns for any kernel function and any number of particles a priori without requiring intuitive initial user-input. We also demonstrate how this objective function can be optimized online to further improve the refinement process during simulations by utilizing a gradient descent and a modified evolutionary optimization. Our investigation reveals an inherent residual refinement error term, which we smooth out using improved and novel methods. Our improved adaptive method is able to simulate adaptive volume ratios of 1 : 1, 000, 000 and higher, even under highly turbulent flows, only being limited by memory consumption. In general, we achieve more than an order of magnitude greater adaptive volume ratios than prior work.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel spatiotemporally adaptive DEM-based snow simulation;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-08-09

2. Physics-based fluid simulation in computer graphics: Survey, research trends, and challenges;Computational Visual Media;2024-04-27

3. A Dual-Particle Approach for Incompressible SPH Fluids;ACM Transactions on Graphics;2024-04-09

4. Isoline Tracking in Particle-Based Fluids Using Level-Set Learning Representation;Applied Sciences;2024-03-21

5. Foveated Fluid Animation in Virtual Reality;2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR);2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3