Versatile surface tension and adhesion for SPH fluids

Author:

Akinci Nadir1,Akinci Gizem1,Teschner Matthias1

Affiliation:

1. University of Freiburg

Abstract

Realistic handling of fluid-air and fluid-solid interfaces in SPH is a challenging problem. The main reason is that some important physical phenomena such as surface tension and adhesion emerge as a result of inter-molecular forces in a microscopic scale. This is different from scalar fields such as fluid pressure, which can be plausibly evaluated on a macroscopic scale using particles. Although there exist techniques to address this problem for some specific simulation scenarios, there does not yet exist a general approach to reproduce the variety of effects that emerge in reality from fluid-air and fluid-solid interactions. In order to address this problem, we present a new surface tension force and a new adhesion force. Different from the existing work, our surface tension force can handle large surface tensions in a realistic way. This property lets our approach handle challenging real scenarios, such as water crown formation, various types of fluid-solid interactions, and even droplet simulations. Furthermore, it prevents particle clustering at the free surface where inter-particle pressure forces are incorrect. Our adhesion force allows plausible two-way attraction of fluids and solids and can be used to model different wetting conditions. By using our forces, modeling surface tension and adhesion effects do not require involved techniques such as generating a ghost air phase or surface tracking. The forces are applied to the neighboring fluid-fluid and fluid-boundary particle pairs in a symmetric way, which satisfies momentum conservation. We demonstrate that combining both forces allows simulating a variety of interesting effects in a plausible way.

Funder

Deutsche Forschungsgemeinschaft

Nvidia

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A single-phase GPU-accelerated surface tension model using SPH;Computer Physics Communications;2024-02

2. Numerical simulation of solidification of boiler molten ash impinging on vertical wall based on Smoothed Particle Hydrodynamics method;Numerical Heat Transfer, Part A: Applications;2024-01-30

3. Fluid Simulation;Encyclopedia of Computer Graphics and Games;2024

4. Decoupled Boundary Handling in SPH;The Visual Computer;2023-12-22

5. DiffFR: Differentiable SPH-Based Fluid-Rigid Coupling for Rigid Body Control;ACM Transactions on Graphics;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3