A Dual-Particle Approach for Incompressible SPH Fluids

Author:

Liu Shusen1ORCID,He Xiaowei2ORCID,Guo Yuzhong3ORCID,Chang Yue4ORCID,Wang Wencheng1ORCID

Affiliation:

1. SKLCS, Institute of Software, Chinese Academy of Science and UCAS, Beijing, China

2. Institute of Software, Chinese Academy of Science, Beijing, China

3. Institute of Software, Chinese Academy of Sciences, Beijing, China

4. Peking University, Beijing, China

Abstract

Tensile instability is one of the major obstacles to particle methods in fluid simulation, which would cause particles to clump in pairs under tension and prevent fluid simulation to generate small-scale thin features. To address this issue, previous particle methods either use a background pressure or a finite difference scheme to alleviate the particle clustering artifacts, yet still fail to produce small-scale thin features in free-surface flows. In this article, we propose a dual-particle approach for simulating incompressible fluids. Our approach involves incorporating supplementary virtual particles designed to capture and store particle pressures. These pressure samples undergo systematic redistribution at each time step, grounded in the initial positions of the fluid particles. By doing so, we effectively reduce tensile instability in standard SPH by narrowing down the unstable regions for particles experiencing tensile stress. As a result, we can accurately simulate free-surface flows with rich small-scale thin features, such as droplets, streamlines, and sheets, as demonstrated by experimental results.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3