Wi-Learner

Author:

Feng Chao1,Wang Nan1,Jiang Yicheng2,Zheng Xia2,Li Kang3,Wang Zheng4,Chen Xiaojiang1

Affiliation:

1. Northwest University, Shaanxi International Joint Research Centre for the Battery-Free Internet of Things, China

2. Zhejiang University, School of Art and Archaeology, China

3. Northwest University, School of Information Science and Technology, China

4. School of Computing, University of Leeds, United Kingdom

Abstract

Contactless RF-based sensing techniques are emerging as a viable means for building gesture recognition systems. While promising, existing RF-based gesture solutions have poor generalization ability when targeting new users, environments or device deployment. They also often require multiple pairs of transceivers and a large number of training samples for each target domain. These limitations either lead to poor cross-domain performance or incur a huge labor cost, hindering their practical adoption. This paper introduces Wi-Learner, a novel RF-based sensing solution that relies on just one pair of transceivers but can deliver accurate cross-domain gesture recognition using just one data sample per gesture for a target user, environment or device setup. Wi-Learner achieves this by first capturing the gesture-induced Doppler frequency shift (DFS) from noisy measurements using carefully designed signal processing schemes. It then employs a convolution neural network-based autoencoder to extract the low-dimensional features to be fed into a downstream model for gesture recognition. Wi-Learner introduces a novel meta-learner to "teach" the neural network to learn effectively from a small set of data points, allowing the base model to quickly adapt to a new domain using just one training sample. By so doing, we reduce the overhead of training data collection and allow a sensing system to adapt to the change of the deployed environment. We evaluate Wi-Learner by applying it to gesture recognition using the Widar 3.0 dataset. Extensive experiments demonstrate Wi-Learner is highly efficient and has a good generalization ability, by delivering an accuracy of 93.2% and 74.2% - 94.9% for in-domain and cross-domain using just one sample per gesture, respectively.

Funder

Shaanxi International Science and Technology Cooperation Program

NSFC A3 Foresight Program

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UniFi;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-12-19

2. LiteWiSys: A Lightweight System for WiFi-based Dual-task Action Perception;ACM Transactions on Sensor Networks;2023-11-10

3. PEiD: Precise and Real-Time LOS/NLOS Path Identification Based on Peak Energy Index Distribution;Applied Sciences;2023-06-23

4. SVoice;Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems;2022-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3