Towards Smartphone-based 3D Hand Pose Reconstruction Using Acoustic Signals

Author:

Wang Shiyang1ORCID,Wang Xingchen1ORCID,Jiang Wenjun2ORCID,Miao Chenglin3ORCID,Cao Qiming1ORCID,Wang Haoyu1ORCID,Sun Ke4ORCID,Xue Hongfei5ORCID,Su Lu1ORCID

Affiliation:

1. Electrical and Computer Engineering, Purdue University, West Lafayette, United States

2. Samsung Research America, Mountain View, United States

3. Department of Computer Science, Iowa State University, Ames, United States

4. University of California, San Diego, La Jolla, United States

5. The University of North Carolina at Charlotte, Charlotte, United States

Abstract

Accurately reconstructing 3D hand poses is a pivotal element for numerous Human-Computer Interaction applications. In this work, we propose SonicHand, the first smartphone-based 3D hand pose reconstruction system using purely inaudible acoustic signals. SonicHand incorporates signal processing techniques and a deep learning framework to address a series of challenges. First, it encodes the topological information of the hand skeleton as prior knowledge and utilizes a deep learning model to realistically and smoothly reconstruct the hand poses. Second, the system employs adversarial training to enhance the generalization ability of our system to be deployed in a new environment or for a new user. Third, we adopt a hand tracking method based on channel impulse response estimation. It enables our system to handle the scenario where the hand performs gestures while moving arbitrarily as a whole. We conduct extensive experiments on a smartphone testbed to demonstrate the effectiveness and robustness of our system from various dimensions. The experiments involve 10 subjects performing up to 12 different hand gestures in three distinctive environments. When the phone is held in one of the user’s hands, the proposed system can track joints with an average error of 18.64 mm.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3