Privacy-Preserving and Cross-Domain Human Sensing by Federated Domain Adaptation with Semantic Knowledge Correction

Author:

Gong Kaijie1ORCID,Gao Yi1ORCID,Dong Wei1ORCID

Affiliation:

1. The State Key Laboratory of Blockchain and Data Security, Zhejiang University, HangZhou, China

Abstract

Federated Learning (FL) enables distributed training of human sensing models in a privacy-preserving manner. While promising, federated global models suffer from cross-domain accuracy degradation when the labeled source domains statistically differ from the unlabeled target domain. To tackle this problem, recent methods perform pairwise computation on the source and target domains to minimize the domain discrepancy by adversarial strategy. However, these methods are limited by the fact that pairwise source-target adversarial alignment alone only achieves domain-level alignment, which entails the alignment of domain-invariant as well as environment-dependent features. The misalignment of environment-dependent features may cause negative impact on the performance of the federated global model. In this paper, we introduce FDAS, a Federated adversarial Domain Adaptation with Semantic Knowledge Correction method. FDAS achieves concurrent alignment at both domain and semantic levels to improve the semantic quality of the aligned features, thereby reducing the misalignment of environment-dependent features. Moreover, we design a cross-domain semantic similarity metric and further devise feature selection and feature refinement mechanisms to enhance the two-level alignment. In addition, we propose a similarity-aware model fine-tuning strategy to further improve the target model performance. We evaluate the performance of FDAS extensively on four public and a real-world human sensing datasets. Extensive experiments demonstrate the superior effectiveness of FDAS and its potential in the real-world ubiquitous computing scenarios.

Publisher

Association for Computing Machinery (ACM)

Reference53 articles.

1. 2023. frp. https://github.com/fatedier/frp.

2. Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. 2010. A theory of learning from different domains. Machine learning 79 (2010), 151--175.

3. TiFL: A Tier-based Federated Learning System

4. Progressive Feature Alignment for Unsupervised Domain Adaptation

5. Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In International conference on machine learning. PMLR, 1597--1607.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3