APPROX-NoC

Author:

Boyapati Rahul1,Huang Jiayi1,Majumder Pritam1,Yum Ki Hwan1,Kim Eun Jung1

Affiliation:

1. Texas A&M University

Abstract

The trend of unsustainable power consumption and large memory bandwidth demands in massively parallel multicore systems, with the advent of the big data era, has brought upon the onset of alternate computation paradigms utilizing heterogeneity, specialization, processor-in-memory and approximation. Approximate Computing is being touted as a viable solution for high performance computation by relaxing the accuracy constraints of applications. This trend has been accentuated by emerging data intensive applications in domains like image/video processing, machine learning and big data analytics that allow inaccurate outputs within an acceptable variance. Leveraging relaxed accuracy for high throughput in Networks-on-Chip (NoCs), which have rapidly become the accepted method for connecting a large number of on-chip components, has not yet been explored. We propose APPROX-NoC, a hardware data approximation framework with an online data error control mechanism for high performance NoCs. APPROX-NoC facilitates approximate matching of data patterns, within a controllable value range, to compress them thereby reducing the volume of data movement across the chip. Our evaluation shows that APPROX-NoC achieves on average up to 9% latency reduction and 60% throughput improvement compared with state-of-the-art NoC data compression mechanisms, while maintaining low application error. Additionally, with a data intensive graph processing application we achieve a 36.7% latency reduction compared to state-of-the-art compression mechanisms.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single Exact Single Approximate Adders and Single Exact Dual Approximate Adders;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2023-07

2. A Compression Router for Low-Latency Network-on-Chip;IEICE Transactions on Information and Systems;2023-02-01

3. HREN: A Hybrid Reliable and Energy-Efficient Network-on-Chip Architecture;IEEE Transactions on Emerging Topics in Computing;2022

4. Exploiting Data Resilience in Wireless Network-on-chip Architectures;ACM Journal on Emerging Technologies in Computing Systems;2020-04-30

5. HEAP: A Holistic Error Assessment Framework for Multiple Approximations Using Probabilistic Graphical Models;Electronics;2020-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3