SIERE

Author:

Chen Yu Ju (Edwin)1ORCID,Sheen Seung Heon1,Ascher Uri M.1,Pai Dinesh K.2

Affiliation:

1. University of British Columbia, Vancouver, Canada

2. University of British Columbia and Vital Mechanics Research, Vancouver, Canada

Abstract

Physics-based simulation methods for deformable objects suffer limitations due to the conflicting requirements that are placed on them. The work horse semi-implicit (SI) backward Euler method is very stable and inexpensive, but it is also a blunt instrument. It applies heavy damping, which depends on the timestep, to all solution modes and not just to high-frequency ones. As such, it makes simulations less lively, potentially missing important animation details. At the other end of the scale, exponential methods (exponential Rosenbrock Euler (ERE)) are known to deliver good approximations to all modes, but they get prohibitively expensive and less stable for very stiff material. In this article, we devise a hybrid, semi-implicit method called SIERE that allows the previous methods SI and ERE to each perform what they are good at. To do this, we employ at each timestep a partial spectral decomposition, which picks the lower, leading modes, applying ERE in the corresponding subspace. The rest is handled (i.e., effectively damped out) by SI. No solution of nonlinear algebraic equations is required throughout the algorithm. We show that the resulting method produces simulations that are visually as good as those of the exponential method at a computational price that does not increase with stiffness, while displaying stability and damping with respect to the high-frequency modes. Furthermore, the phenomenon of occasional divergence of SI is avoided.

Funder

NSERC Discovery

Vital Mechanics Research

Canada Research Chairs Program

NSERC PGSD

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3