Does joint impedance improve dynamic leg simulations with explicit and implicit solvers?

Author:

Bahdasariants Serhii,Forti Barela Ana Maria,Gritsenko ValeriyaORCID,Bacca Odair,Angelo Barela José,Yakovenko SergiyORCID

Abstract

AbstractThe nervous system predicts and executes complex motion of body segments actuated by the coordinated action of muscles. When a stroke or other traumatic injury disrupts neural processing, the impeded behavior has not only kinematic but also kinetic attributes that require interpretation. Biomechanical models could allow medical specialists to observe these dynamic variables and instantaneously diagnose mobility issues that may otherwise remain unnoticed. However, the real-time and subject-specific dynamic computations necessitate the optimization these simulations. In this study, we explored the effects of intrinsic viscoelasticity, choice of numerical integration method, and decrease in sampling frequency on the accuracy and stability of the simulation. The bipedal model with 17 rotational degrees of freedom (DOF)—describing hip, knee, ankle, and standing foot contact—was instrumented with viscoelastic elements with a resting length in the middle of the DOF range of motion. The accumulation of numerical errors was evaluated in dynamic simulations using swing-phase experimental kinematics. The relationship between viscoelasticity, sampling rates, and the integrator type was evaluated. The optimal selection of these three factors resulted in an accurate reconstruction of joint kinematics (err < 1%) and kinetics (err < 5%) with increased simulation time steps. Notably, joint viscoelasticity reduced the integration errors ofexplicit methodsand had minimal to no additional benefit forimplicit methods. Gained insights have the potential to improve diagnostic tools and accurize real-time feedback simulations used in the functional recovery of neuromuscular diseases and intuitive control of modern prosthetic solutions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3