GraphPEG

Author:

Lü Yashuai1,Guo Hui2,Huang Libo2,Yu Qi2,Shen Li2,Xiao Nong2,Wang Zhiying2

Affiliation:

1. Space Engineering University, China

2. National University of Defense Technology, China

Abstract

Due to massive thread-level parallelism, GPUs have become an attractive platform for accelerating large-scale data parallel computations, such as graph processing. However, achieving high performance for graph processing with GPUs is non-trivial. Processing graphs on GPUs introduces several problems, such as load imbalance, low utilization of hardware unit, and memory divergence. Although previous work has proposed several software strategies to optimize graph processing on GPUs, there are several issues beyond the capability of software techniques to address. In this article, we present GraphPEG, a graph processing engine for efficient graph processing on GPUs. Inspired by the observation that many graph algorithms have a common pattern on graph traversal, GraphPEG improves the performance of graph processing by coupling automatic edge gathering with fine-grain work distribution. GraphPEG can also adapt to various input graph datasets and simplify the software design of graph processing with hardware-assisted graph traversal. Simulation results show that, in comparison with two representative highly efficient GPU graph processing software framework Gunrock and SEP-Graph, GraphPEG improves graph processing throughput by 2.8× and 2.5× on average, and up to 7.3× and 7.0× for six graph algorithm benchmarks on six graph datasets, with marginal hardware cost.

Funder

NSF of China

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HashGrid: An optimized architecture for accelerating graph computing on FPGAs;Future Generation Computer Systems;2025-01

2. Performance Evaluation of Parallel Graphs Algorithms Utilizing Graphcore IPU;Electronics;2024-05-21

3. GPU-Accelerated Batch-Dynamic Subgraph Matching;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. WER: Maximizing Parallelism of Irregular Graph Applications Through GPU Warp EqualizeR;2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC);2024-01-22

5. Distributed large-scale graph processing on FPGAs;Journal of Big Data;2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3