Performance Evaluation of Parallel Graphs Algorithms Utilizing Graphcore IPU

Author:

Gepner Paweł1ORCID,Kocot Bartłomiej2,Paprzycki Marcin3ORCID,Ganzha Maria3ORCID,Moroz Leonid1,Olas Tomasz4ORCID

Affiliation:

1. Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 86, 02-524 Warszawa, Poland

2. Centre of Informatics—Tricity Academic Supercomputer & Network (CI TASK), Gdansk University of Technology, 80-233 Gdańsk, Poland

3. Systems Research Institute, Newelska 6, 01-447 Warszawa, Poland

4. Faculty of Computer Science and Artificial Intelligence, Czestochowa University of Technology, Dąbrowskiego 73, 42-200 Czestochowa, Poland

Abstract

Recent years have been characterized by increasing interest in graph computations. This trend can be related to the large number of potential application areas. Moreover, increasing computational capabilities of modern computers allowed turning theory of graph algorithms into explorations of best methods for their actual realization. These factors, in turn, brought about ideas like creation of a hardware component dedicated to graph computation; i.e., the Graphcore Intelligent Processor Unit (IPU). Interestingly, Graphcore systems are a hardware implementation of the Bulk Synchronous Parallel paradigm, which seemed to be a mostly theoretical concept from the end of last century. In this context, the question that has to be addressed experimentally is as follows: how good are Graphcore systems in comparison with standard systems that can be used to run graph algorithms, i.e., CPUs and GPUs. To provide a partial response to this broad question, in this contribution, PageRank, Single Source Shortest Path and Breadth-First Search algorithms are used to compare the performance of IPU-deployed algorithms to other parallel architectures. Obtained results clearly show that the Graphcore IPU outperforms other devices for the studied heterogeneous algorithms and, currently, provides best-in-class execution time results for a range of graph sizes and densities.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3