Optimal Joins Using Compressed Quadtrees

Author:

Arroyuelo Diego1,Navarro Gonzalo2,Reutter Juan L.3,Rojas-Ledesma Javiel2ORCID

Affiliation:

1. DIINF, UTFSM & IMFD, Santiago, Chile

2. DCC, U. of Chile & IMFD, Santiago, Chile

3. DCC, PUC & IMFD, Santiago, Chile

Abstract

Worst-case optimal join algorithms have gained a lot of attention in the database literature. We now count several algorithms that are optimal in the worst case, and many of them have been implemented and validated in practice. However, the implementation of these algorithms often requires an enhanced indexing structure: to achieve optimality one either needs to build completely new indexes or must populate the database with several instantiations of indexes such as B \( + \) -trees. Either way, this means spending an extra amount of storage space that is typically one or two orders of magnitude more than what is required to store the raw data. We show that worst-case optimal algorithms can be obtained directly from a representation that regards the relations as point sets in variable-dimensional grids, without the need of any significant extra storage. Our representation is a compressed quadtreefor the static indexes and a quadtreebuilt on the fly that shares subtrees (which we dub a qdag) for intermediate results. We develop a compositional algorithm to process full join queries under this representation, which simulates navigation of the quadtreeof the output, and show that the running time of this algorithm is worst-case optimal in data complexity. We implement our index and compare it experimentally with state-of-the-art alternatives. Our experiments show that our index uses even less space than what is needed to store the data in raw form (and replaces it) and one or two orders of magnitude less space than the other indexes. At the same time, our query algorithm is competitive in time, even sharply outperforming other indexes in various cases. Finally, we extend our framework to evaluate more expressive queries from relational algebra, including not only joins and intersections but also unions and negations. To obtain optimality on those more complex formulas, we introduce a lazy version of qdagswe dub lqdags, which allow us navigate over the quadtreerepresenting the output of a formula while only evaluating what is needed from its components. We show that the running time of our query algorithms on this extended set of operations is worst-case optimal under some constraints. Moving to full relational algebra, we also show that lqdagscan handle selections and projections. While worst-case optimality is no longer guaranteed, we introduce a partial materialization scheme that extends results from Deep and Koutris regarding compressed representation of query results.

Funder

ANID-Millennium Science Initiative Program

Fondecyt

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3