An Improved Model for Kernel Density Estimation Based on Quadtree and Quasi-Interpolation

Author:

Wang JiechengORCID,Liu Yantong,Chang Jincai

Abstract

There are three main problems for classical kernel density estimation in its application: boundary problem, over-smoothing problem of high (low)-density region and low-efficiency problem of large samples. A new improved model of multivariate adaptive binned quasi-interpolation density estimation based on a quadtree algorithm and quasi-interpolation is proposed, which can avoid the deficiency in the classical kernel density estimation model and improve the precision of the model. The model is constructed in three steps. Firstly, the binned threshold is set from the three dimensions of sample number, width of bins and kurtosis, and the bounded domain is adaptively partitioned into several non-intersecting bins (intervals) by using the iteration idea from the quadtree algorithm. Then, based on the good properties of the quasi-interpolation, the kernel functions of the density estimation model are constructed by introducing the theory of quasi-interpolation. Finally, the binned coefficients of the density estimation model are constructed by using the idea of frequency replacing probability. Simulation of the Monte Carlo method shows that the proposed non-parametric model can effectively solve the three shortcomings of the classical kernel density estimation model and significantly improve the prediction accuracy and calculation efficiency of the density function for large samples.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3