Worst-Case-Optimal Similarity Joins on Graph Databases

Author:

Arroyuelo Diego1ORCID,Bustos Benjamin2ORCID,Gómez-Brandón Adrián3ORCID,Hogan Aidan4ORCID,Navarro Gonzalo4ORCID,Reutter Juan5ORCID

Affiliation:

1. DCC, Escuela de Ingeniería, Pontificia Universidad Católica & IMFD, Santiago, Chile

2. DCC, University of Chile & IMFD, Santiago, Chile, Chile

3. Universidade da Coruña & CITIC, La Coruña, Spain

4. DCC, University of Chile & IMFD, Santiago, Chile

5. DCC, Escuela de Ingeniería, Pontificia Universidad Católica & Instituto de Ingeniería Matemática y Computaciónal, Pontificia Universidad Católica, Santiago, Chile

Abstract

We extend the concept of worst-case optimal equijoins in graph databases to the case where some nodes are required to be within the k-nearest neighbors (kNN) of others under some similarity function. We model the problem by superimposing the database graph with the kNN graph and show that a variant of Leapfrog TrieJoin (LTJ) implemented over a compact data structure called the Ring can be seamlessly extended to integrate similarity clauses with the equijoins in the LTJ query process, retaining worst-case optimality in many relevant cases. Our experiments on a benchmark that combines Wikidata and IMGpedia show that our enhanced LTJ algorithm outperforms by a considerable margin a baseline that first applies classic LTJ and then completes the query by applying the similarity predicates. The difference is more pronounced on queries where the similarity clauses are more densely connected to the query, becoming of an order of magnitude in some cases.

Funder

Ministerio de Ciencia e Innovación

Agencia Nacional de Investigación y Desarrollo

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3