Distributed evaluation of subgraph queries using worst-case optimal low-memory dataflows

Author:

Ammar Khaled1,McSherry Frank2,Salihoglu Semih1,Joglekar Manas3

Affiliation:

1. University of Waterloo

2. ETH Zürich

3. Google, Inc

Abstract

We study the problem of finding and monitoring fixed-size subgraphs in a continually changing large-scale graph. We present the first approach that (i) performs worst-case optimal computation and communication, (ii) maintains a total memory footprint linear in the number of input edges, and (iii) scales down per-worker computation, communication, and memory requirements linearly as the number of workers increases, even on adversarially skewed inputs. Our approach is based on worst-case optimal join algorithms, recast as a data-parallel dataflow computation. We describe the general algorithm and modifications that make it robust to skewed data, prove theoretical bounds on its resource requirements in the massively parallel computing model, and implement and evaluate it on graphs containing as many as 64 billion edges. The underlying algorithm and ideas generalize from finding and monitoring subgraphs to the more general problem of computing and maintaining relational equi-joins over dynamic relations.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Distributed Graph Algorithms on Massive Graphs;ACM Computing Surveys;2024-09-05

2. Optimizing subgraph retrieval and matching with an efficient indexing scheme;Knowledge and Information Systems;2024-07-16

3. GPU-accelerated relaxed graph pattern matching algorithms;The Journal of Supercomputing;2024-06-16

4. Understanding High-Performance Subgraph Pattern Matching: A Systems Perspective;Proceedings of the 7th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA);2024-06-09

5. Parallelization of butterfly counting on hierarchical memory;The VLDB Journal;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3