On sufficient conditions for unsatisfiability of random formulas

Author:

Atserias Albert1

Affiliation:

1. Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

A descriptive complexity approach to random 3-SAT is initiated. We show that unsatisfiability of any significant fraction of random 3-CNF formulas cannot be certified by any property that is expressible in Datalog. Combined with the known relationship between the complexity of constraint satisfaction problems and expressibility in Datalog, our result implies that any constraint propagation algorithm working with small constraints will fail to certify unsatisfiability almost always. Our result is a consequence of designing a winning strategy for one of the players in the existential pebble game. The winning strategy makes use of certain extension axioms that we introduce and hold almost surely on a random 3-CNF formula. The second contribution of our work is the connection between finite model theory and propositional proof complexity. To make this connection explicit, we establish a tight relationship between the number of pebbles needed to win the game and the width of the Resolution refutations. As a consequence to our result and the known size--width relationship in Resolution, we obtain new proofs of the exponential lower bounds for Resolution refutations of random 3-CNF formulas and the Pigeonhole Principle.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proof Complexity for the Maximum Satisfiability Problem and its Use in SAT Refutations;Journal of Logic and Computation;2022-03-01

2. Towards a Better Understanding of (Partial Weighted) MaxSAT Proof Systems;Theory and Applications of Satisfiability Testing – SAT 2020;2020

3. Definable inapproximability: new challenges for duplicator;Journal of Logic and Computation;2019-12

4. A FINITE-MODEL-THEORETIC VIEW ON PROPOSITIONAL PROOF COMPLEXITY;LOG METH COMPUT SCI;2019

5. Space proof complexity for random 3-CNFs;Information and Computation;2017-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3