Publisher
Springer International Publishing
Reference12 articles.
1. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based maxsat algorithms. Artif. Intell. 196, 77–105 (2013).
https://doi.org/10.1016/j.artint.2013.01.002
2. Atserias, A.: On sufficient conditions for unsatisfiability of random formulas. J. ACM 51(2), 281–311 (2004).
https://doi.org/10.1145/972639.972645
3. Lecture Notes in Computer Science;A Atserias,2019
4. Bacchus, F., Hyttinen, A., Järvisalo, M., Saikko, P.: Reduced cost fixing for maximum satisfiability. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018), 13–19 July (2018), Stockholm, Sweden, pp. 5209–5213 (2018). ijcai.org.
https://doi.org/10.24963/ijcai.2018/723
5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Scaling up Nonmonotonic c-Inference via Partial MaxSAT Problems;Lecture Notes in Computer Science;2024
2. MaxSAT resolution for regular propositional logic;International Journal of Approximate Reasoning;2023-11
3. Circular (Yet Sound) Proofs in Propositional Logic;ACM Transactions on Computational Logic;2023-04-07
4. MaxSAT Resolution and Subcube Sums;ACM Transactions on Computational Logic;2023-01-18
5. A Tableau Calculus for MaxSAT Based on Resolution;Frontiers in Artificial Intelligence and Applications;2022-10-17