Definable inapproximability: new challenges for duplicator

Author:

Atserias Albert1,Dawar Anuj2

Affiliation:

1. Departament de Ciències de la Computació, Universitat Politècnica de Catalunya, Barcelona 08034, Spain

2. Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, U.K

Abstract

AbstractWe consider the hardness of approximation of optimization problems from the point of view of definability. For many $\textrm{NP}$-hard optimization problems it is known that, unless $\textrm{P} = \textrm{NP} $, no polynomial-time algorithm can give an approximate solution guaranteed to be within a fixed constant factor of the optimum. We show, in several such instances and without any complexity theoretic assumption, that no algorithm that is expressible in fixed-point logic with counting (FPC) can compute an approximate solution. Since important algorithmic techniques for approximation algorithms (such as linear or semidefinite programming) are expressible in FPC, this yields lower bounds on what can be achieved by such methods. The results are established by showing lower bounds on the number of variables required in first-order logic with counting to separate instances with a high optimum from those with a low optimum for fixed-size instances.

Funder

European Research Council

MICCIN

EPSRC

Publisher

Oxford University Press (OUP)

Subject

Logic,Hardware and Architecture,Arts and Humanities (miscellaneous),Software,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fibrational Tale of Operational Logical Relations: Pure, Effectful and Differential;Logical Methods in Computer Science;2024-04-04

2. A Logic for P: Are we Nearly There Yet?;ACM SIGLOG News;2024-04

3. Pseudorandom Finite Models;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

4. On the Descriptive Complexity of Temporal Constraint Satisfaction Problems;Journal of the ACM;2022-12-19

5. On the Weisfeiler-Leman dimension of fractional packing;Information and Computation;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3