CuSP

Author:

Hoang Loc1,Dathathri Roshan1,Gill Gurbinder1,Pingali Keshav1

Affiliation:

1. The University of Texas at Austin, Austin, TX, USA

Abstract

Graph analytics systems must analyze graphs with billions of vertices and edges which require several terabytes of storage. Distributed-memory clusters are often used for analyzing such large graphs since the main memory of a single machine is usually restricted to a few hundreds of gigabytes. This requires partitioning the graph among the machines in the cluster. Existing graph analytics systems use a built-in partitioner that incorporates a particular partitioning policy, but the best policy is dependent on the algorithm, input graph, and platform. Therefore, built-in partitioners are not sufficiently flexible. Stand-alone graph partitioners are available, but they too implement only a few policies. CuSP is a fast streaming edge partitioning framework which permits users to specify the desired partitioning policy at a high level of abstraction and quickly generates highquality graph partitions. For example, it can partition wdc12, the largest publicly available web-crawl graph with 4 billion vertices and 129 billion edges, in under 2 minutes for clusters with 128 machines. Our experiments show that it can produce quality partitions 6× faster on average than the state-of-theart stand-alone partitioner in the literature while supporting a wider range of partitioning policies.

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An adaptive graph sampling framework for graph analytics;Social Network Analysis and Mining;2023-12-06

2. RAGraph: A Region-Aware Framework for Geo-Distributed Graph Processing;Proceedings of the VLDB Endowment;2023-11

3. RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2023-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3