RAGraph: A Region-Aware Framework for Geo-Distributed Graph Processing

Author:

Yao Feng1,Tao Qian2,Yu Wenyuan2,Zhang Yanfeng1,Gong Shufeng1,Wang Qiange1,Yu Ge1,Zhou Jingren2

Affiliation:

1. Northeastern Univ., China

2. Alibaba Group, China

Abstract

In many global businesses of multinational enterprises, graph-structure data is usually geographically distributed in different regions to support low-latency services. Geo-distributed graph processing suffers from the Wide Area Networks (WANs) with scarce and heterogeneous bandwidth, thus essentially differs from traditional distributed graph processing. In this paper, we propose RAGraph, a Region-Aware framework for geo-distributed graph processing. At the core of RAGraph, we design a region-aware graph processing framework that allows advancing inefficient global updates locally and enables sensible coordination-free message interactions. RAGraph also contains an adaptive hierarchical message interaction engine to switch interaction modes adaptively based on network heterogeneity and fluctuation, and a discrepancy-aware message filtering strategy to filter important messages. Finally, the experiments show that RAGraph can achieve 1.69X - 40.53X speedup and 20.9% - 97% WAN cost reduction compared with state-of-the-art systems.

Publisher

Association for Computing Machinery (ACM)

Reference78 articles.

1. 2002. web-Google. https://www.cise.ufl.edu/research/sparse/matrices/SNAP/web-Google.html.

2. 2005. Arabic-2005. https://law.di.unimi.it/webdata/arabic-2005/.

3. 2005. UK-2005. https://law.di.unimi.it/webdata/uk-2005/.

4. 2020. libgrape-lite. https://github.com/alibaba/libgrape-lite.

5. 2021. Facebook Daily Active Users (DAUs). https://investor.fb.com/investor-events/event-details/2021/Facebook-Q2--2021-Earnings/default.aspx.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Iterative Graph Computing with Updated Neighbor States;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Improving Graph Compression for Efficient Resource-Constrained Graph Analytics;Proceedings of the VLDB Endowment;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3