A Single Bitline Highly Stable, Low Power With High Speed Half-Select Disturb Free 11T SRAM Cell

Author:

Soni Lokesh1ORCID,Pandey Neeta1ORCID

Affiliation:

1. Delhi Technological University, Delhi, India

Abstract

A half-select disturb-free 11T (HF11T) static random access memory (SRAM) cell with low power, better stability and high speed is presented in this paper. The proposed SRAM cell works well with bit-interleaving design, which enhances soft-error immunity. A comparison of the proposed HF11T cell with other cutting-edge designs such as single-ended HS free 11T (SEHF11T), a shared-pass-gate 11T (SPG11T), data-dependent stack PMOS switching 10T (DSPS10T), a single-ended half-selected robust 12T (HSR12T), and 11T SRAM cells has been made. It exhibits 4.85×/9.19× less read delay ( T RA ) and write delay ( T WA ), respectively as compared to other considered SRAM cells. It achieves 1.07×/1.02× better read and write stability, respectively than the considered SRAM cells. It shows maximum reduction of 1.68×/4.58×/94.72×/9×/145× leakage power, read power, write power consumption, read power delay product (PDP) and write PDP respectively, than the considered SRAM cells. In addition, the proposed HF11T cell achieves 10.14× higher I on / I off ratio than the other compared cells. These improvements come with a trade-off, resulting in 1.13× more T RA compared to SPG11T. The simulation is performed with Cadence Virtuoso 45nm CMOS technology at supply voltage ( V DD ) of 0.6 V.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3