EARS

Author:

Rath Alexander1ORCID,Grittmann Pascal2ORCID,Herholz Sebastian3ORCID,Weier Philippe1ORCID,Slusallek Philipp1ORCID

Affiliation:

1. Saarland University, Germany and German Research Center for Artificial Intelligence (DFKI), Germany

2. Saarland University, Germany

3. Intel Corporation, Germany

Abstract

Russian roulette and splitting are widely used techniques to increase the efficiency of Monte Carlo estimators. But, despite their popularity, there is little work on how to best apply them. Most existing approaches rely on simple heuristics based on, e.g., surface albedo and roughness. Their efficiency often hinges on user-controlled parameters. We instead iteratively learn optimal Russian roulette and splitting factors during rendering, using a simple and lightweight data structure. Given perfect estimates of variance and cost, our fixed-point iteration provably converges to the optimal Russian roulette and splitting factors that maximize the rendering efficiency. In our application to unidirectional path tracing, we achieve consistent and significant speed-ups over the state of the art.

Funder

European Union

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference30 articles.

1. Attila T. Áfra. 2019. Intel® Open Image Denoise. https://www.openimagedenoise.org/. Attila T. Áfra. 2019. Intel ® Open Image Denoise. https://www.openimagedenoise.org/.

2. Particle transport and image synthesis

3. Stefan Banach . 1922. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. math 3, 1 ( 1922 ), 133--181. Stefan Banach. 1922. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. math 3, 1 (1922), 133--181.

4. Vasile Berinde . 2007. Iterative approximation of fixed points . Vol. 1912 . Springer . Vasile Berinde. 2007. Iterative approximation of fixed points. Vol. 1912. Springer.

5. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/ Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Path Termination for Radiance Caching Through Explicit Variance Trading;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-08-09

2. Light Path Guided Culling for Hybrid Real-Time Path Tracing;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-08-09

3. Proxy Tracing: Unbiased Reciprocal Estimation for Optimized Sampling in BDPT;ACM Transactions on Graphics;2024-07-19

4. Stylized Rendering as a Function of Expectation;ACM Transactions on Graphics;2024-07-19

5. Revisiting controlled mixture sampling for rendering applications;ACM Transactions on Graphics;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3