Contact-centric deformation learning

Author:

Romero Cristian1,Casas Dan1,Chiaramonte Maurizio M.2,Otaduy Miguel A.1

Affiliation:

1. Universidad Rey Juan Carlos, Spain

2. Meta Reality Labs Research

Abstract

We propose a novel method to machine-learn highly detailed, nonlinear contact deformations for real-time dynamic simulation. We depart from previous deformation-learning strategies, and model contact deformations in a contact-centric manner. This strategy shows excellent generalization with respect to the object's configuration space, and it allows for simple and accurate learning. We complement the contact-centric learning strategy with two additional key ingredients: learning a continuous vector field of contact deformations, instead of a discrete approximation; and sparsifying the mapping between the contact configuration and contact deformations. These two ingredients further contribute to the accuracy, efficiency, and generalization of the method. We integrate our learning-based contact deformation model with subspace dynamics, showing real-time dynamic simulations with fine contact deformation detail.

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resolving Collisions in Dense 3D Crowd Animations;ACM Transactions on Graphics;2024-09-06

2. A Neural Network Model for Efficient Musculoskeletal-Driven Skin Deformation;ACM Transactions on Graphics;2024-07-19

3. An Empirical Investigation on Variational Autoencoder-Based Dynamic Modeling of Deformable Objects from RGB Data;2024 32nd Mediterranean Conference on Control and Automation (MED);2024-06-11

4. Physics-Encoded Graph Neural Networks for Deformation Prediction under Contact;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. SparseSoftDECA — Efficient high-resolution physics-based facial animation from sparse landmarks;Computers & Graphics;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3