NeAT

Author:

Rückert Darius1,Wang Yuanhao2,Li Rui2,Idoughi Ramzi2,Heidrich Wolfgang2

Affiliation:

1. KAUST and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

2. KAUST, Saudi Arabia

Abstract

In this paper, we present Neural Adaptive Tomography (NeAT), the first adaptive, hierarchical neural rendering pipeline for tomography. Through a combination of neural features with an adaptive explicit representation, we achieve reconstruction times far superior to existing neural inverse rendering methods. The adaptive explicit representation improves efficiency by facilitating empty space culling and concentrating samples in complex regions, while the neural features act as a neural regularizer for the 3D reconstruction. The NeAT framework is designed specifically for the tomographic setting, which consists only of semi-transparent volumetric scenes instead of opaque objects. In this setting, NeAT outperforms the quality of existing optimization-based tomography solvers while being substantially faster. https://github.com/darglein/NeAT

Funder

King Abdullah University of Science and Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference75 articles.

1. Khaled Abujbara , Ramzi Idoughi , and Wolfgang Heidrich . 2021 . Non-Linear Anisotropic Diffusion for Memory-Efficient Computed Tomography Super-Resolution Reconstruction. In 2021 International Conference on 3D Vision (3DV). IEEE, 175--185 . Khaled Abujbara, Ramzi Idoughi, and Wolfgang Heidrich. 2021. Non-Linear Anisotropic Diffusion for Memory-Efficient Computed Tomography Super-Resolution Reconstruction. In 2021 International Conference on 3D Vision (3DV). IEEE, 175--185.

2. Learned Primal-Dual Reconstruction

3. Lose the Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion

4. Bradley Atcheson , Ivo Ihrke , Wolfgang Heidrich , Art Tevs , Derek Bradley, Marcus Magnor, and Hans-Peter Seidel. 2008 . Time-resolved 3d capture of non-stationary gas flows. ACM transactions on graphics (TOG) 27, 5 (2008), 1--9. Bradley Atcheson, Ivo Ihrke, Wolfgang Heidrich, Art Tevs, Derek Bradley, Marcus Magnor, and Hans-Peter Seidel. 2008. Time-resolved 3d capture of non-stationary gas flows. ACM transactions on graphics (TOG) 27, 5 (2008), 1--9.

5. Computed tomography reconstruction using deep image prior and learned reconstruction methods

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane;IEEE Transactions on Medical Imaging;2024-09

2. INeAT: an artifact-suppressed and resolution-enhanced computed tomography through iterative neural adaptive tomography;Optics Express;2024-08-22

3. Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View Synthesis;ACM Transactions on Graphics;2024-07-19

4. Generative AI-Assisted Novel View Synthesis of Coronary Arteries for Angiography;2024 IEEE International Symposium on Medical Measurements and Applications (MeMeA);2024-06-26

5. Neural Radiance Fields for 3D Reconstruction in Monoscopic Laryngeal Endoscopy;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3