Regression-based Monte Carlo integration

Author:

Salaün Corentin1,Gruson Adrien2,Hua Binh-Son3,Hachisuka Toshiya4,Singh Gurprit1

Affiliation:

1. Max-Planck-Institut für Informatik, Germany

2. McGill University & École de Technologie Supérieure, Canada

3. VinAI Research, Vietnam

4. University of Waterloo, Canada

Abstract

Monte Carlo integration is typically interpreted as an estimator of the expected value using stochastic samples. There exists an alternative interpretation in calculus where Monte Carlo integration can be seen as estimating a constant function---from the stochastic evaluations of the integrand---that integrates to the original integral. The integral mean value theorem states that this constant function should be the mean (or expectation) of the integrand. Since both interpretations result in the same estimator, little attention has been devoted to the calculus-oriented interpretation. We show that the calculus-oriented interpretation actually implies the possibility of using a more complex function than a constant one to construct a more efficient estimator for Monte Carlo integration. We build a new estimator based on this interpretation and relate our estimator to control variates with least-squares regression on the stochastic samples of the integrand. Unlike prior work, our resulting estimator is provably better than or equal to the conventional Monte Carlo estimator. To demonstrate the strength of our approach, we introduce a practical estimator that can act as a simple drop-in replacement for conventional Monte Carlo integration. We experimentally validate our framework on various light transport integrals. The code is available at https://github.com/iribis/regressionmc.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference36 articles.

1. Integrating clipped spherical harmonics expansions;Belcour Laurent;ACM Transactions on Graphics (TOG),2018

2. Primary-space Adaptive Control Variates Using Piecewise-polynomial Approximations

3. Philip J Davis . 2013. Methods of numerical integration . Academic , New York; London. Philip J Davis. 2013. Methods of numerical integration. Academic, New York; London.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Control Variates with Automatic Integration;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

2. Revisiting controlled mixture sampling for rendering applications;ACM Transactions on Graphics;2023-07-26

3. Recursive Control Variates for Inverse Rendering;ACM Transactions on Graphics;2023-07-26

4. An Efficient Self-Tuning Proposal Distribution for Random Variate Generation With Complex Density Representation;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3