Recursive Control Variates for Inverse Rendering

Author:

Nicolet Baptiste12ORCID,Rousselle Fabrice3ORCID,Novak Jan4ORCID,Keller Alexander5ORCID,Jakob Wenzel1ORCID,Müller Thomas3ORCID

Affiliation:

1. Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

2. NVIDIA, Lausanne, Switzerland

3. NVIDIA, Zurich, Switzerland

4. NVIDIA, Prague, Czech Republic

5. NVIDIA, Berlin, Germany

Abstract

We present a method for reducing errors---variance and bias---in physically based differentiable rendering (PBDR). Typical applications of PBDR repeatedly render a scene as part of an optimization loop involving gradient descent. The actual change introduced by each gradient descent step is often relatively small, causing a significant degree of redundancy in this computation. We exploit this redundancy by formulating a gradient estimator that employs a recursive control variate , which leverages information from previous optimization steps. The control variate reduces variance in gradients, and, perhaps more importantly, alleviates issues that arise from differentiating loss functions with respect to noisy inputs, a common cause of drift to bad local minima or divergent optimizations. We experimentally evaluate our approach on a variety of path-traced scenes containing surfaces and volumes and observe that primal rendering efficiency improves by a factor of up to 10.

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference90 articles.

1. Inverse Path Tracing for Joint Material and Lighting Estimation

2. Unbiased warped-area sampling for differentiable rendering

3. Differentiable Rendering of Neural SDFs through Reparameterization

4. Jonathan T. Barron , Ben Mildenhall , Matthew Tancik , Peter Hedman , Ricardo Martin-Brualla , and Pratul P . Srinivasan . 2021 . Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields . arXiv (2021). https://jonbarron.info/mipnerf/ Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. arXiv (2021). https://jonbarron.info/mipnerf/

5. Nikolaus Binder , Sascha Fricke , and Alexander Keller . 2022. Massively Parallel Path Space Filtering . In Monte Carlo and Quasi-Monte Carlo Methods, MCQMC 2020 , Oxford, United Kingdom , August 10--14, Alexander Keller (Ed.). Springer , 149--168. Nikolaus Binder, Sascha Fricke, and Alexander Keller. 2022. Massively Parallel Path Space Filtering. In Monte Carlo and Quasi-Monte Carlo Methods, MCQMC 2020, Oxford, United Kingdom, August 10--14, Alexander Keller (Ed.). Springer, 149--168.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unifying radiative transfer models in computer graphics and remote sensing, Part I: A survey;Journal of Quantitative Spectroscopy and Radiative Transfer;2024-02

2. Joint Sampling and Optimisation for Inverse Rendering;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

3. Amortizing Samples in Physics-Based Inverse Rendering Using ReSTIR;ACM Transactions on Graphics;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3