Revisiting LP-NUCA Energy Consumption

Author:

Gracia Darío Suárez1,Ferrerón Alexandra2,Campo Luis Montesano Del3,Arnal Teresa Monreal4,Yúfera Víctor Viñals2

Affiliation:

1. Qualcomm Research Silicon Valley, CA, USA

2. Universidad de Zaragoza and HiPEAC, Zaragoza, Spain

3. Universidad de Zaragoza, Zaragoza, Spain

4. Universitat Politècnica de Catalunya and HiPEAC, Barcelona, Spain

Abstract

Cache working-set adaptation is key as embedded systems move to multiprocessor and Simultaneous Multithreaded Architectures (SMT) because interthread pollution harms system performance and battery life. Light-Power NUCA (LP-NUCA) is a working-set adaptive cache that depends on temporal-locality to save energy. This work identifies the sources of energy waste in LP-NUCAs: parallel access to the tag and data arrays of the tiles and low locality phases with useless block migration. To counteract both issues, we prove that switching to serial access reduces energy without harming performance and propose a machine learning Adaptive Drop Rate (ADR) controller that minimizes the amount of replacement and migration when locality is low. This work demonstrates that these techniques efficiently adapt the cache drop and access policies to save energy. They reduce LP-NUCA consumption 22.7% for 1SMT. With interthread cache contention in 2SMT, the savings rise to 29%. Versus a conventional organization, energy--delay improves 20.8% and 25% for 1- and 2SMT benchmarks, and, in 65% of the 2SMT mixes, gains are larger than 20%.

Funder

(Spanish Gov. and European ERDF)

Consolider CSD2007-00050 (Spanish Gov.)

gaZ: T48 research group (Aragón Gov. and European ESF)

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3