BubbleView

Author:

Kim Nam Wook1,Bylinskii Zoya2,Borkin Michelle A.3,Gajos Krzysztof Z.4ORCID,Oliva Aude5,Durand Fredo5,Pfister Hanspeter4

Affiliation:

1. * Harvard SEAS

2. * MIT CSAIL

3. Northeastern CCIS

4. Harvard SEAS

5. MIT CSAIL

Abstract

In this article, we present BubbleView, an alternative methodology for eye tracking using discrete mouse clicks to measure which information people consciously choose to examine. BubbleView is a mouse-contingent, moving-window interface in which participants are presented with a series of blurred images and click to reveal “bubbles” -- small, circular areas of the image at original resolution, similar to having a confined area of focus like the eye fovea. Across 10 experiments with 28 different parameter combinations, we evaluated BubbleView on a variety of image types: information visualizations, natural images, static webpages, and graphic designs, and compared the clicks to eye fixations collected with eye-trackers in controlled lab settings. We found that BubbleView clicks can both (i) successfully approximate eye fixations on different images, and (ii) be used to rank image and design elements by importance. BubbleView is designed to collect clicks on static images, and works best for defined tasks such as describing the content of an information visualization or measuring image importance. BubbleView data is cleaner and more consistent than related methodologies that use continuous mouse movements. Our analyses validate the use of mouse-contingent, moving-window methodologies as approximating eye fixations for different image and task types.

Funder

Toyota Research Institute/MIT CSAIL Joint Research Center

Google, Xerox, the NSF Graduate Research Fellowship Program

Kwanjeong Educational Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GazeFusion: Saliency-guided Image Generation;ACM Transactions on Applied Perception;2024-09-06

2. 3D Pop-Ups: Omnidirectional image visual saliency prediction based on crowdsourced eye-tracking data in VR;Displays;2024-07

3. Saliency3D: A 3D Saliency Dataset Collected on Screen;Proceedings of the 2024 Symposium on Eye Tracking Research and Applications;2024-06-04

4. SalChartQA: Question-driven Saliency on Information Visualisations;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

5. Do You See What I See? A Qualitative Study Eliciting High-Level Visualization Comprehension;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3