GazeFusion: Saliency-guided Image Generation

Author:

Zhang Yunxiang1ORCID,Wu Nan2ORCID,Lin Connor Z.2ORCID,Wetzstein Gordon2ORCID,Sun Qi1ORCID

Affiliation:

1. New York University, USA

2. Stanford University, USA

Abstract

Diffusion models offer unprecedented image generation power given just a text prompt. While emerging approaches for controlling diffusion models have enabled users to specify the desired spatial layouts of the generated content, they cannot predict or control where viewers will pay more attention due to the complexity of human vision. Recognizing the significance of attention-controllable image generation in practical applications, we present a saliency-guided framework to incorporate the data priors of human visual attention mechanisms into the generation process. Given a user-specified viewer attention distribution, our control module conditions a diffusion model to generate images that attract viewers’ attention toward the desired regions. To assess the efficacy of our approach, we performed an eye-tracked user study and a large-scale model-based saliency analysis. The results evidence that both the cross-user eye gaze distributions and the saliency models’ predictions align with the desired attention distributions. Lastly, we outline several applications, including interactive design of saliency guidance, attention suppression in unwanted regions, and adaptive generation for varied display/viewing conditions.

Publisher

Association for Computing Machinery (ACM)

Reference68 articles.

1. Deep Saliency Prior for Reducing Visual Distraction

2. Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval

3. Attributes for image content that attract consumers’ attention to advertisements;Abu Bakar Muhammad Helmi;Procedia-Social and Behavioral Sciences,2015

4. Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. 2023. Stable video diffusion: Scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127 (2023).

5. Ali Borji, Ming-Ming Cheng, Huaizu Jiang, and Jia Li. 2015. Salient object detection: A benchmark. IEEE transactions on image processing 24, 12 (2015), 5706–5722.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3