BodyWire-HCI

Author:

Maity Shovan1,Yang David1,Redford Scott Stanton1,Das Debayan1,Chatterjee Baibhab1,Sen Shreyas1

Affiliation:

1. Purdue University, West Lafayette, Indiana

Abstract

Communication during touch provides a seamless and natural way of interaction between humans and ambient intelligence. Current techniques that couple wireless transmission with touch detection suffer from the problem of selectivity and security, i.e., they cannot ensure communication only through direct touch and not through close proximity. We present  BodyWire-HCI , which utilizes the human body as a wire-like communication channel, to enable human–computer interaction, that for the first time, demonstrates selective and physically secure communication strictly during touch. The signal leakage out of the body is minimized by utilizing a novel, low frequency Electro-QuasiStatic Human Body Communication (EQS-HBC) technique that enables interaction strictly when there is a conductive communication path between the transmitter and receiver through the human body. Design techniques such as capacitive termination and voltage mode operation are used to minimize the human body channel loss to operate at low frequencies and enable EQS-HBC. The demonstrations highlight the impact of  BodyWire-HCI in enabling new human–machine interaction modalities for variety of application scenarios such as secure authentication (e.g., opening a door and pairing a smart device) and information exchange (e.g., payment, image, medical data, and personal profile transfer) through touch (https://www.youtube.com/watch?v=Uwrig2XQIH8).

Funder

National Science Foundation

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3