Physically Secure Wearable–Wearable Through-Body Interhuman Body Communication

Author:

Yang David,Maity Shovan,Sen Shreyas

Abstract

Human body communication (HBC) has recently emerged as an alternative method to connect devices on and around the human body utilizing the electrical conductivity properties of the human body. HBC can be utilized to enable new interaction modalities between computing devices by enhancing the natural interaction of touch. It also provides the inherent benefit of security and energy-efficiency compared to a traditional wireless communication, such as Bluetooth, making it an attractive alternative. However, most state-of-the-art HBC demonstrations show communication between a wearable and an Earth ground–connected device, and there have been very few implementations of HBC systems demonstrating communication between two wearable devices. Also, most of the HBC implementations suffer from the problem of signal leakage out of the body which enables communication even without direct contact with the body. In this article, we present BodyWire which uses an electro-quasistatic HBC (EQS-HBC) technique to enable communication between two wearable devices and also confine the signal to a very close proximity to the body. We characterize the human body channel loss under different environment (office desk, laboratory, and outdoors), posture, and body location conditions to ascertain the effect of each of these on the overall channel loss. The measurement results show that the channel loss varies within a range of 15dB across all different posture, environmental conditions, and body location variation, illustrating the dynamic range of the signal available at the input of any receiver. Leakage measurements are also carried out from the devices to show the distance over which the signal is available away from the body to illustrate the security aspect of HBC and show its effect on the channel loss measurements. For the first time, a through-body interhuman channel loss characterization is presented. Finally, a demonstration of secure interhuman information exchange between two battery-operated wearable devices is shown through the BodyWire prototype, which shows the smallest form factor HBC demonstration according to the authors’ best knowledge.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference46 articles.

1. The Signal Transmission Mechanism on the Surface of Human Body for Body Channel Communication;Bae;IEEE Trans. Microwave Theor. Techn.,2012

2. A 0.24-nJ/b Wireless Body-Area-Network Transceiver with Scalable Double-FSK Modulation;Bae;IEEE J. Solid-state Circuits,2012

3. Living Wall: Programmable Wallpaper for Interactive Spaces;Buechley,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A -96.2dBm / 3.5μW Wake-up Receiver with False Triggering Detection for Human Body Communication;2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3