Exploring Data Splitting Strategies for the Evaluation of Recommendation Models

Author:

Meng Zaiqiao1,McCreadie Richard2,Macdonald Craig3,Ounis Iadh1

Affiliation:

1. University of Glasgow, United Kingdom

2. School of Computing Science University of Glasgow, United Kingdom

3. School of Computing cience University of Glasgow, United Kingdom

Funder

European Community's Horizon 2020 research and innovation programme

Publisher

ACM

Reference29 articles.

1. Ting Bai Lixin Zou Wayne Xin Zhao Pan Du Weidong Liu Jian-Yun Nie and Ji-Rong Wen. 2019. CTRec: A Long-Short Demands Evolution Model for Continuous-Time Recommendation. In SIGIR. 675–684. Ting Bai Lixin Zou Wayne Xin Zhao Pan Du Weidong Liu Jian-Yun Nie and Ji-Rong Wen. 2019. CTRec: A Long-Short Demands Evolution Model for Continuous-Time Recommendation. In SIGIR. 675–684.

2. Pedro G Campos Fernando Díez and Manuel Sánchez-Montañés. 2011. Towards a more realistic evaluation: testing the ability to predict future tastes of matrix factorization-based recommenders. In RecSys. 309–312. Pedro G Campos Fernando Díez and Manuel Sánchez-Montañés. 2011. Towards a more realistic evaluation: testing the ability to predict future tastes of matrix factorization-based recommenders. In RecSys. 309–312.

3. Rocío Cañamares Pablo Castells and Alistair Moffat. 2020. Offline evaluation options for recommender systems. Information Retrieval Journal(2020) 1–24. Rocío Cañamares Pablo Castells and Alistair Moffat. 2020. Offline evaluation options for recommender systems. Information Retrieval Journal(2020) 1–24.

4. Maurizio Ferrari Dacrema Paolo Cremonesi and Dietmar Jannach. 2019. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In RecSys. 101–109. Maurizio Ferrari Dacrema Paolo Cremonesi and Dietmar Jannach. 2019. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In RecSys. 101–109.

5. Xiangnan He Lizi Liao Hanwang Zhang Liqiang Nie Xia Hu and Tat-Seng Chua. 2017. Neural collaborative filtering. In WWW. 173–182. Xiangnan He Lizi Liao Hanwang Zhang Liqiang Nie Xia Hu and Tat-Seng Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustainable transparency on recommender systems: Bayesian ranking of images for explainability;Information Fusion;2024-11

2. From Variability to Stability: Advancing RecSys Benchmarking Practices;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Federated Recommender System Based on Diffusion Augmentation and Guided Denoising;ACM Transactions on Information Systems;2024-08-13

4. Job Recommendations: Benchmarking of Collaborative Filtering Methods for Classifieds;Electronics;2024-08-01

5. Survey of Federated Learning Models for Spatial-Temporal Mobility Applications;ACM Transactions on Spatial Algorithms and Systems;2024-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3