Optimizing Replication, Communication, and Capacity Allocation in CMPs

Author:

Chishti Zeshan1,Powell Michael D.1,Vijaykumar T. N.1

Affiliation:

1. Purdue University

Abstract

Chip multiprocessors (CMPs) substantially increase capacity pressure on the on-chip memory hierarchy while requiring fast access. Neither private nor shared caches can provide both large capacity and fast access in CMPs. We observe that compared to symmetric multiprocessors (SMPs), CMPs change the latency-capacity tradeoff in two significant ways. We propose three novel ideas to exploit the changes: (1) Though placing copies close to requestors allows fast access for read-only sharing, the copies also reduce the already-limited on-chip capacity in CMPs. We propose controlled replication to reduce capacity pressure by not making extra copies in some cases, and obtaining the data from an existing on-chip copy. This option is not suitable for SMPs because obtaining data from another processor is expensive and capacity is not limited to on-chip storage. (2) Unlike SMPs, CMPs allow fast on-chip communication between processors for read-write sharing. Instead of incurring slow access to read-write shared data through coherence misses as do SMPs, we propose in-situ communication to provide fast access without making copies or incurring coherence misses. (3) Accessing neighborsý caches is not as expensive in CMPs as it is in SMPs. We propose capacity stealing in which private data that exceeds a coreýs capacity is placed in a neighboring cache with less capacity demand. To incorporate our ideas, we use a hybrid of private, per-processor tag arrays and a shared data array. Because the shared data array is slow, we employ non-uniform access and distance associativity from previous proposals to hold frequently-accessed data in regions close to the requestor. We extend the previously-proposed Non-uniform access with Replacement And Placement usIng Distance associativity (NuRAPID) to CMPs, and call our cache CMP-NuRAPID. Our results show that for a 4-core CMP with 8 MB cache, CMP-NuRAPID improves performance by 13% over a shared cache and 8% over private caches for three commercial multithreaded workloads.

Publisher

Association for Computing Machinery (ACM)

Reference30 articles.

1. Variability in architectural simulations of multi-threaded workloads;Alameldeen A. R.;HPCA,2003

2. Generating representative Web workloads for network and server performance evaluation

3. Piranha

4. Managing Wire Delay in Large Chip-Multiprocessor Caches

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3