SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning

Author:

Trummer Immanuel1,Wang Junxiong1,Wei Ziyun1,Maram Deepak1,Moseley Samuel1,Jo Saehan1,Antonakakis Joseph1,Rayabhari Ankush1

Affiliation:

1. Cornell University, Ithaca, NY, USA

Abstract

SkinnerDB uses reinforcement learning for reliable join ordering, exploiting an adaptive processing engine with specialized join algorithms and data structures. It maintains no data statistics and uses no cost or cardinality models. Also, it uses no training workloads nor does it try to link the current query to seemingly similar queries in the past. Instead, it uses reinforcement learning to learn optimal join orders from scratch during the execution of the current query. To that purpose, it divides the execution of a query into many small time slices. Different join orders are tried in different time slices. SkinnerDB merges result tuples generated according to different join orders until a complete query result is obtained. By measuring execution progress per time slice, it identifies promising join orders as execution proceeds. Along with SkinnerDB, we introduce a new quality criterion for query execution strategies. We upper-bound expected execution cost regret, i.e., the expected amount of execution cost wasted due to sub-optimal join order choices. SkinnerDB features multiple execution strategies that are optimized for that criterion. Some of them can be executed on top of existing database systems. For maximal performance, we introduce a customized execution engine, facilitating fast join order switching via specialized multi-way join algorithms and tuple representations. We experimentally compare SkinnerDB’s performance against various baselines, including MonetDB, Postgres, and adaptive processing methods. We consider various benchmarks, including the join order benchmark, TPC-H, and JCC-H, as well as benchmark variants with user-defined functions. Overall, the overheads of reliable join ordering are negligible compared to the performance impact of the occasional, catastrophic join order choice.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3