Demonstrating ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Joins via Reinforcement Learning

Author:

Wang Junxiong1,Gray Mitchell1,Trummer Immanuel1,Kara Ahmet2,Olteanu Dan2

Affiliation:

1. Cornell University, Ithaca, NY, USA

2. University of Zurich, Zurich, Switzerland

Abstract

Performance of worst-case optimal join algorithms depends on the order in which the join attributes are processed. It is challenging to identify suitable orders prior to query execution due to the huge search space of possible orders and unreliable execution cost estimates in case of data skew or data correlation. We demonstrate ADOPT, a novel query engine that integrates adaptive query processing with a worst-case optimal join algorithm. ADOPT divides query execution into episodes, during which different attribute orders are invoked. With runtime feedback on performance of different attribute orders, ADOPT rapidly approaches near-optimal orders. Moreover, ADOPT uses a unique data structure which keeps track of the processed input data to prevent redundant work across different episodes. It selects attribute orders to try via reinforcement learning, balancing the need for exploring new orders with the desire to exploit promising orders. In experiments, ADOPT outperforms baselines, including commercial and open-source systems utilizing worst-case optimal join algorithms, particularly for complex queries that are difficult to optimize.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3