ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Join Algorithms via Reinforcement Learning

Author:

Wang Junxiong1,Trummer Immanuel1,Kara Ahmet2,Olteanu Dan2

Affiliation:

1. Cornell University, Ithaca, NY, USA

2. University of Zurich, Zurich, Switzerland

Abstract

The performance of worst-case optimal join algorithms depends on the order in which the join attributes are processed. Selecting good orders before query execution is hard, due to the large space of possible orders and unreliable execution cost estimates in case of data skew or data correlation. We propose ADOPT, a query engine that combines adaptive query processing with a worst-case optimal join algorithm, which uses an order on the join attributes instead of a join order on relations. ADOPT divides query execution into episodes in which different attribute orders are tried. Based on run time feedback on attribute order performance, ADOPT converges quickly to near-optimal orders. It avoids redundant work across different orders via a novel data structure, keeping track of parts of the join input that have been successfully processed. It selects attribute orders to try via reinforcement learning, balancing the need for exploring new orders with the desire to exploit promising orders. In experiments with various data sets and queries, it outperforms baselines, including commercial and open-source systems using worst-case optimal join algorithms, whenever queries become complex and therefore difficult to optimize.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Space & Time Efficient Leapfrog Triejoin;Proceedings of the 7th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA);2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3