The efficacy of error mitigation techniques for DRAM retention failures

Author:

Khan Samira1,Lee Donghyuk2,Kim Yoongu2,Alameldeen Alaa R.3,Wilkerson Chris3,Mutlu Onur2

Affiliation:

1. Carnegie Mellon University & Intel Labs, Pittsburgh, USA

2. Carnegie Mellon University, Pittsburgh, USA

3. Intel Labs, Hillsboro, USA

Abstract

As DRAM cells continue to shrink, they become more susceptible to retention failures. DRAM cells that permanently exhibit short retention times are fairly easy to identify and repair through the use of memory tests and row and column redundancy. However, the retention time of many cells may vary over time due to a property called Variable Retention Time (VRT) . Since these cells intermittently transition between failing and non-failing states, they are particularly difficult to identify through memory tests alone. In addition, the high temperature packaging process may aggravate this problem as the susceptibility of cells to VRT increases after the assembly of DRAM chips. A promising alternative to manufacture-time testing is to detect and mitigate retention failures after the system has become operational. Such a system would require mechanisms to detect and mitigate retention failures in the field, but would be responsive to retention failures introduced after system assembly and could dramatically reduce the cost of testing, enabling much longer tests than are practical with manufacturer testing equipment. In this paper, we analyze the efficacy of three common error mitigation techniques (memory tests, guardbands, and error correcting codes (ECC)) in real DRAM chips exhibiting both intermittent and permanent retention failures. Our analysis allows us to quantify the efficacy of recent system-level error mitigation mechanisms that build upon these techniques. We revisit prior works in the context of the experimental data we present, showing that our measured results significantly impact these works' conclusions. We find that mitigation techniques that rely on run-time testing alone [38, 27, 50, 26] are unable to ensure reliable operation even after many months of testing. Techniques that incorporate ECC[4, 52], however, can ensure reliable DRAM operation after only a few hours of testing. For example, VS-ECC[4], which couples testing with variable strength codes to allocate the strongest codes to the most error-prone memory regions, can ensure reliable operation for 10 years after only 19 minutes of testing. We conclude that the viability of these mitigation techniques depend on efficient online profiling of DRAM performed without disrupting system operation.

Funder

Division of Computer and Network Systems

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips: Experimental Characterization and Analysis;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2024-06-24

2. Spatial Variation-Aware Read Disturbance Defenses: Experimental Analysis of Real DRAM Chips and Implications on Future Solutions;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

3. An Experimental Analysis of RowHammer in HBM2 DRAM Chips;2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S);2023-06

4. Hybrid Refresh: Improving DRAM Performance by Handling Weak Rows Smartly;Proceedings of the 2022 International Symposium on Memory Systems;2022-10-03

5. DR-STRaNGe: End-to-End System Design for DRAM-based True Random Number Generators;2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3