Affiliation:
1. Dept. of Electrical & Computer Engineering, University of Maryland, College Park
2. Dept. of Electrical Engineering & Computer Science, University of Michigan, Ann Arbor
Abstract
In response to the growing gap between memory access time and processor speed, DRAM manufacturers have created several new DRAM architectures. This paper presents a simulation-based performance study of a representative group, each evaluated in a small system organization. These small-system organizations correspond to workstation-class computers and use on the order of 10 DRAM chips. The study covers Fast Page Mode, Extended Data Out, Synchronous, Enhanced Synchronous, Synchronous Link, Rambus, and Direct Rambus designs. Our simulations reveal several things: (a) current advanced DRAM technologies are attacking the memory bandwidth problem but not the latency problem; (b) bus transmission speed will soon become a primary factor limiting memory-system performance; (c) the post-L2 address stream still contains significant locality, though it varies from application to application; and (d) as we move to wider buses, row access time becomes more prominent, making it important to investigate techniques to exploit the available locality to decrease access time.
Publisher
Association for Computing Machinery (ACM)
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献