MobileNets Can Be Lossily Compressed: Neural Network Compression for Embedded Accelerators

Author:

Lim Se-MinORCID,Jun Sang-WooORCID

Abstract

Although neural network quantization is an imperative technology for the computation and memory efficiency of embedded neural network accelerators, simple post-training quantization incurs unacceptable levels of accuracy degradation on some important models targeting embedded systems, such as MobileNets. While explicit quantization-aware training or re-training after quantization can often reclaim lost accuracy, this is not always possible or convenient. We present an alternative approach to compressing such difficult neural networks, using a novel variant of the ZFP lossy floating-point compression algorithm to compress both model weights and inter-layer activations and demonstrate that it can be efficiently implemented on an embedded FPGA platform. Our ZFP variant, which we call ZFPe, is designed for efficient implementation on embedded accelerators, such as FPGAs, requiring a fraction of chip resources per bandwidth compared to state-of-the-art lossy compression accelerators. ZFPe-compressing the MobileNet V2 model with an 8-bit budget per weight and activation results in significantly higher accuracy compared to 8-bit integer post-training quantization and shows no loss of accuracy, compared to an uncompressed model when given a 12-bit budget per floating-point value. To demonstrate the benefits of our approach, we implement an embedded neural network accelerator on a realistic embedded acceleration platform equipped with the low-power Lattice ECP5-85F FPGA and a 32 MB SDRAM chip. Each ZFPe module consumes less than 6% of LUTs while compressing or decompressing one value per cycle, requiring a fraction of the resources compared to state-of-the-art compression accelerators while completely removing the memory bottleneck of our accelerator.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference73 articles.

1. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform

2. A survey of FPGA-based neural network accelerator;Guo;arXiv,2017

3. Mobilenets: Efficient convolutional neural networks for mobile vision applications;Howard;arXiv,2017

4. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size;Iandola;arXiv,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Offline EP Test Tube Positioning Tilt Correction Algorithm Based on Lightweight Yolov4;International Journal of Pattern Recognition and Artificial Intelligence;2023-08

2. ZHW: A Numerical CODEC for Big Data Scientific Computation;2022 International Conference on Field-Programmable Technology (ICFPT);2022-12-05

3. A Novel Deep Learning Model Compression Algorithm;Electronics;2022-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3