Maps

Author:

Barua Rajeev1,Lee Walter1,Amarasinghe Saman1,Agarwal Anant1

Affiliation:

1. M.I.T. Laboratory for Computer Science, Cambridge, MA

Abstract

This paper describes Maps, a compiler managed memory system for Raw architectures. Traditional processors for sequential programs maintain the abstraction of a unified memory by using a single centralized memory system. This implementation leads to the infamous "Von Neumann bottleneck," with machine performance limited by the large memory latency and limited memory bandwidth. A Raw architecture addresses this problem by taking advantage of the rapidly increasing transistor budget to move much of its memory on chip. To remove the bottleneck and complexity associated with centralized memory, Raw distributes the memory with its processing elements. Unified memory semantics are implemented jointly by the hardware and the compiler. The hardware provides a clean compiler interface to its two inter-tile interconnects: a fast, statically schedulable network and a traditional dynamic network. Maps then uses these communication mechanisms to orchestrate the memory accesses for low latency and parallelism while enforcing proper dependence. It optimizes for speed in two ways: by finding accesses that can be scheduled on the static interconnect through static promotion, and by minimizing dependence sequentialization for the remaining accesses. Static promotion is performed using equivalence class unification and modulo unrolling; memory dependences are enforced through explicit synchronization and software serial ordering. We have implemented Maps based on the SUIF infrastructure. This paper demonstrates that the exclusive use of static promotion yields roughly 20-fold speedup on 32 tiles for our regular applications and about 5-fold speedup on 16 or more tiles for our irregular applications. The paper also shows that selective use of dynamic accesses can be a useful complement to the mostly static memory system.

Publisher

Association for Computing Machinery (ACM)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Runtime-Guided Management of Scratchpad Memories in Multicore Architectures;2015 International Conference on Parallel Architecture and Compilation (PACT);2015-10

2. Affine Loop Optimization Based on Modulo Unrolling in Chapel;Proceedings of the 8th International Conference on Partitioned Global Address Space Programming Models - PGAS '14;2014

3. Reconfigurable Systems;Adaptable Embedded Systems;2012-10-20

4. Deployment of Reconfigurable Systems;Dynamic Reconfigurable Architectures and Transparent Optimization Techniques;2010

5. Pipelining saturated accumulation;IEEE Transactions on Computers;2009-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3