Selective value prediction

Author:

Calder Brad1,Reinman Glenn1,Tullsen Dean M.1

Affiliation:

1. Department of Computer Science and Engineering, University of California, San Diego

Abstract

Value Prediction is a relatively new technique to increase instruction-level parallelism by breaking true data dependence chains. A value prediction architecture produces values, which may be later consumed by instructions that execute speculatively using the predicted value.This paper examines selective techniques for using value prediction in the presence of predictor capacity constraints and reasonable misprediction penalties. We examine prediction and confidence mechanisms in light of these constraints, and we minimize capacity conflicts through instruction filtering. The latter technique filters which instructions put values into the value prediction table. We examine filtering techniques based on instruction type, as well as giving priority to instructions belonging to the longest data dependence path in the processor's active instruction window. We apply filtering both to the producers of predicted values and the consumers. In addition, we examine the benefit of using different confidence levels for instructions using predicted values on the longest dependence path.

Publisher

Association for Computing Machinery (ACM)

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixture-of-Rookies: Saving DNN computations by predicting ReLU outputs;Microprocessors and Microsystems;2024-09

2. Constable: Improving Performance and Power Efficiency by Safely Eliminating Load Instruction Execution;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

3. Leveraging Targeted Value Prediction to Unlock New Hardware Strength Reduction Potential;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

4. Approximate Communication;ACM Computing Surveys;2019-01-31

5. Parallel Precomputation with Input Value Prediction for Model Predictive Control Systems;IEICE Transactions on Information and Systems;2018-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3