Affiliation:
1. Univ. of California, Berkeley
Abstract
The polynomiality of nonlinear separable convex (concave) optimization problems, on linear constraints with a matrix with “small” subdeterminants, and the polynomiality of such integer problems, provided the inteter linear version of such problems ins polynomial, is proven. This paper presents a general-purpose algorithm for converting procedures that solves linear programming problems. The conversion is polynomial for constraint matrices with polynomially bounded subdeterminants. Among the important corollaries of the algorithm is the extension of the polynomial solvability of integer linear programming problems with totally unimodular constraint matrix, to integer-separable convex programming. An algorithm for finding a ε-accurate optimal continuous solution to the nonlinear problem that is polynomial in log(1/ε) and the input size and the largest subdeterminant of the constraint matrix is also presented. These developments are based on proximity results between the continuous and integral optimal solutions for problems with any nonlinear separable convex objective function. The practical feature of our algorithm is that is does not demand an explicit representation of the nonlinear function, only a polynomial number of function evaluations on a prespecified grid.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Cited by
166 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献