Proximity and Flatness Bounds for Linear Integer Optimization

Author:

Celaya Marcel1,Kuhlmann Stefan2,Paat Joseph3ORCID,Weismantel Robert4

Affiliation:

1. School of Mathematics, Cardiff University, Wales CF24 4AG, United Kingdom;

2. Institut für Mathematik, Technische Universität Berlin, 10587 Berlin, Germany;

3. Sauder School of Business, University of British Columbia, Vancouver, British Columbia V6T 1ZC, Canada;

4. Department of Mathematics, Institute for Operations Research, Eidgenössische Technische Hochschule Zürich, 8092 Zurich, Switzerland

Abstract

This paper deals with linear integer optimization. We develop a technique that can be applied to provide improved upper bounds for two important questions in linear integer optimization. Given an optimal vertex solution for the linear relaxation, how far away is the nearest optimal integer solution (if one exists; proximity bounds)? If a polyhedron contains no integer point, what is the smallest number of integer parallel hyperplanes defined by an integral, nonzero, normal vector that intersect the polyhedron (flatness bounds)? This paper presents a link between these two questions by refining a proof technique that has been recently introduced by the authors. A key technical lemma underlying our technique concerns the areas of certain convex polygons in the plane; if a polygon [Formula: see text] satisfies [Formula: see text], where τ denotes [Formula: see text] counterclockwise rotation and [Formula: see text] denotes the polar of K, then the area of [Formula: see text] is at least three. Funding: J. Paat was supported by the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2021-02475]. R. Weismantel was supported by the Einstein Stiftung Berlin.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Matrices over a Polynomial Ring with Restricted Subdeterminants;Lecture Notes in Computer Science;2024

2. Enumeration and Unimodular Equivalence of Empty Delta-Modular Simplices;Mathematical Optimization Theory and Operations Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3